
Pretty-printing of kernel data structures

Daniel Lovasko
Charles University in Prague

lovasko@freebsd.org

Abstract

One of the key features of a debugger is the abil-
ity to examine memory and the associated data
structures. For a long time, DDB, the FreeBSD
kernel debugger, has been shipping with limited
functionality in this area. By borrowing a core
part of the DTrace technology, the Compact C
Type Format (CTF), we aim to provide a con-
venient and self-maintainable way for DDB to
pretty-print all C data structures used in the cur-
rently loaded kernel image. In order to satisfy
technological and licensing criteria we developed
a custom library implementation of the CTF.
While implementing the idea, we faced many
challenges, such as intelligent printing of recur-
sive data structures, avoiding the need to per-
form disk I/O inside the debugger, supporting
cross-compilation by being endian-independent
or designing the library to achieve predictable
speed and memory consumption. We conclude
with musings about other potential usage of the
format in FreeBSD and we discuss the possibility
to extend the format to support C++ classes.

1 CTF

While developing the DTrace software, team at
Sun Microsystems was presented with a chal-
lenge to find a way to represent C data types.
The existing formats such as the DWARF or

STABS are either too bloated with debugging
information outside the needed scope or do not
store the data in an efficient way so that it could
be stored on a production system.

The result was the Compact C Type Format
(CTF) that had few goals in mind: space min-
imalism which is present in every aspect of the
technology, and the ability to represent complex
C types (e.g. constant pointer to a function).
This paper discusses the second version of the
format.

1.1 Overview

Due to historical reasons, the CTF data is lo-
cated in an ELF section named .SUNW ctf. The
whole binary blob can be divided into 6 sections:
format header, label section, type section, func-
tion section, data object section and the string
table.

The header contains the offsets of the conse-
quent sections, parent relations, and a flag field
that currently indicates only whether the rest of
the data is compressed.

As mentioned and established above, the CTF
is a very efficient way to store the C type infor-
mation. Essentially, the format distinguishes be-
tween the following objects: integers (which con-
tain characters and void), floating point num-
bers, structs and unions, pointers, arrays, func-
tions, typedefs, forward declarations, and qual-

1



ifiers const, restrict and volatile. Each ob-
ject is assigned a non-negative two-byte integer
ID which is used by other objects to reference
it (e.g. a pointer is always referencing an an-
other object). An algorithm that follows such
references has to be careful not to follow cyclic
references and therefore avoid hanging.

Apart from storing the pure type information,
CTF contains data that is interrelated with the
symbol table - namely the types of functions and
data objects (global variables). CTF associates
this data with the symbol table by using the
same order of objects.

The CTF string table is defined to be com-
plementary to the ELF string table, effectively
preventing data duplication.

1.2 Labels and merging

After a quick observation of the kernel code, it
is obvious that a large portion of the types is
used in both the kernel and its modules (e.g.
commonly used integer types intXX t, cpu t,
. . . ). Since kernel modules are always present
with the kernel (but not necessarily the other
way around) we can safely assume that they can
depend on the types defined in the kernel. By
substituting the actual type data from the kernel
module CTF section with references to the CTF
data of the kernel file, we are able to save space.
This process is called merging.

Taking the inheritance to more extreme
lengths by creating a system-wide parent-child
CTF relationships between shared objects and
binaries is discussed in the section 7.3.

The label section consists of label records - a
pair of associated ID and a name. They serve a
purpose of protecting type entries that are ref-
erenced from outside of the data set to be over-
written in case of a parent update.

1.3 Toolset

In order to examine, create and manipulate
the CTF data on a higher level a toolset of
command-line utilities was created. The most
basic tool used to inspect the CTF data is the
ctfdump utility. Its purpose is to print the data
information along with internals such as IDs.
Optionally, it can compute statistics about the
types - average number of members of a struct,
highest function argument count, etc. In our
adaptation of this tool, we separated this func-
tionality into the standalone application called
ctfstats to be more aligned with the UNIX
philosophy. Since there is no support for gen-
erating the CTF data in compilers, another way
had to be found: the ctfconvert. Traditionally,
all major compilers are able to produce STABS

or DWARF data. Fortunately, DWARF is a su-
perset of CTF and therefore we are able to ob-
tain the required data. Last but certainly not
least, ctfmerge is designed to perform the merg-
ing and copying of data sets.

1.4 Contemporary presence

The presence of the CTF data for the FreeBSD
kernel is motivated largely by the DTrace soft-
ware. During the build of the kernel the make

script calls the ctfconvert repeatedly to con-
vert each kernel and kernel module object so that
it contains the CTF data too. Afterwards, all the
CTF data is merged against the kernel file. This
procedure happens if and only if the WITH CDDL

and WITH CTF options are selected.

2 DDB

DDB is an interactive kernel debugger that sup-
ports unique features such as live single-stepping

2



the kernel code or inserting breakpoints to the
kernel code. It can be used to inspect processes,
threads, global variables, and many more ob-
jects. Apart from examining specific objects,
DDB can be used to investigate hangs caused ei-
ther by a deadlock or a livelock. Thanks to being
an integral part of the kernel code, DDB is al-
ways available (except when explicitly excluded
from the kernel configuration file).

This paper focuses on the DDB’s ability to ex-
amine memory, specifically reading the of values
of variables and symbols.

3 Problem

One of the crucial parts of debugging any algo-
rithm or code in general is the content of vari-
ables. Being able to spot a erroneous value might
be a solid lead to the problematic code. Pro-
viding the kernel developers with a facility to
inspect the memory with greater freedom from
hardship might speed up the bug fixing process
along with implementation of new features.

4 Current situation

The problem of pretty-printing kernel data
structures was tackled before with an approach
that requires linear amount of work to the num-
ber of structures present. Examples of such com-
mands in the current DDB version are: show

bio, show buffer, show domain and others. In
case of a different structure that is not included
in this list, user needs to leave the comfort of
such commands and retrieve back to the raw
commands print and examine. Using these
commands to study contents of a memory that
contains complex (possibly even nested) data
structure takes tremendous amount of time and

can even introduce some concentration-related
mistakes. Such finite list approach combined
with raw word-sized memory reading is a painful
and insufficient.

5 Solution

The available CTF data is a perfect fit for such
task: its minimal memory requirements allow
it to be stored on disk and loaded to the main
memory when necessary, and contains informa-
tion about the all used types to a great detail.
One of the obvious benefits is the universality of
such approach, where no additional code needs
to be written to support new types introduced
in new iterations of the kernel code. Important
addition is also the total reduction of human-
induced mistakes, since the CTF data is gener-
ated directly from the DWARF data that come
from the source.

6 Implementation

6.1 Library

We developed a BSD-licensed implementation of
the CTF called libctf. It aims to replace the
old libctf written at Sun. Technical reasons for
such change are described below.

6.1.1 Well defined type sizes

The original Sun libctf implementation is using
the classic C types (int, short, . . . ) to repre-
sent all CTF internal information. Thanks to
vague definitions of the C type sizes, the CTF
data will have different size on a different plat-
form. Our implementation uses the standard
stdint.h types - uint8 t, int32 t, etc. This

3



has two main benefits: the size is strongly de-
fined beforehand and the same CTF data can be
manipulated or even created on a platform with
an int of a different size.

6.1.2 Endianness

The old Sun implementation of the libctf does
not handle the endianness at all. While cross-
compiling a kernel on a machine with a differ-
ent endian than the target machine, user is in-
terested in generating the CTF data too. Even
though it will not produce any error, problems
will arise upon reading the data on the target
machine. Our libctf uses big-endian for storing
the data on the disk and converts them to hosts
endianness upon reading, much like the TCP/IP
network stack.

6.1.3 Kernel space

Kernel space usage of the libctf was planned
from the beginning of the project. Reading and
parsing of the CTF data works in both kernel
and user space without any change in the user-
presented API.

6.1.4 Unit and integration tests

Taking the inspiration from the modern software
movement, libctf contains unit and integration
tests.

6.2 Debugger

We introduced a new command for DDB -
prettyprint with a short pp alternative. The
command takes two main arguments: an ad-
dress, and a name of a data structure that should
reside at the address. Optional features include

hexadecimal output instead of the decimal and
enabling the typedef chain solving.

6.2.1 Caching

Performing I/O operations inside the kernel de-
bugger is very tricky due to its own subsystems
that do not support disk reading/writing. Since
the CTF data is located inside the ELF sec-
tion of the kernel binary /boot/kernel/kernel,
it must be loaded into the main memory be-
fore entering the debugger. An ideal place for
such procedure is the function that resides in
file and is triggered after setting sysctl entry
debug.kdb.enter to 1.

Fortunately, the already present function
link elf ctf get loads the right byte blocks
from the kernel file using kernel space methods
and even implemented caching, so that the data
can be loaded once (in our case before entering
the debugger) and repeated calls do not perform
any I/O due to the cached result.

6.2.2 Pretty-formatting

The output of the prettyprint command as-
pires to be as similar to the actual C declaration.
The major difference is excluding the final semi-
colon in favor of an equals sign followed by the
value of the variable.

6.2.3 Typedef chain

A common practice is to create typedefed vari-
ants of basic types without any change, to in-
troduce a more clearer type naming. This tech-
nique can be applied in multiple layers, creating
a typedef chain. The prettyprint command
aims to solve these chains, by presenting each
link.

4



6.2.4 Common data structures

If the pretty-printing algorithm would ignore
specific implementation details of even a lit-
tle complex data structures, like linked lists, it
would become unusable. Without any alteration
the algorithm would include new level of indenta-
tion with every element in the list and therefore
make it unusable for lists of length 4 or more,
considering the 80 characters limit of the DDB
terminal.

An approach that ignores this would still be
correct, but also the exact opposite of user
friendly. As it turns out, not only linked lists
demand special attention, but almost every re-
cursive data structure. The design decision was
to include this distinctive method for all the
data structures commonly used in kernel that
are defined in header files sys/queue.h and
sys/tree.h.

7 Future use of CTF

7.1 Kernel modules

In the present-day implementation, the search
algorithm is looking for types only in the kernel
CTF data. Extending it to include the modules
will broaden the debugging possibilities in a sig-
nificant way.

7.2 System-wide linking

Relationships like the one between the kernel and
its modules exist in many instances: libc.so

and base userland utilities, Gtk+ shared objects
with Gtk+ applications, Apache and its mod-
ules, etc. With the new libctf implementation
even multilevel inheritance is supported. This
means that a Gtk+ application written in C

could be CTF-merged against Gtk+ shared ob-
jects which will be in turn CTF-merged with the
libc.so. This will shrink the memory require-
ments even more and allow for broader adapta-
tion.

7.3 Symbol table

Current implementation of the pretty-printing
does not interact with the symbol table, which
might be improved. Combining the information
from the symbol table, CTF sections regarding
function and data objects might result in im-
proved ease of debugging of these objects.

7.4 Compilers

After adding support for writing the CTF data in
libctf, its inclusion due to the simplicity of use
and permissive license can be planned in com-
piler suites so that they can emit the CTF data
and the ctfconvert utility can be deprecated.

7.5 Machine-readable output

Possible addition to the CTF command-line
toolset, mainly ctfdump, is the libxo library
from Juniper Networks that provides a struc-
tured machine-readable output in various for-
mats.

8 Extensions of CTF

Prevailing limitation of the CTF comes directly
from the name of the format - it is focused exclu-
sively on the C language and its types. There-
fore its very cumbersome to use it with other
languages, e.g. C++. In order to inspect a
simple std::string, user needs to replicate the

5



memory structure used in his C++ implementa-
tion. Such use in DTrace leads to a code that
is compiler suite specific which leads to limited
portability. Possible solution would be to create
a next version of CTF, named CTF++, along
with updated toolset that will support C++
classes, their access restrictions, inheritance rela-
tionships and member methods and data fields.
This change would enable to use DTrace to in-
spect C++ applications like Firefox, Octave,
MongoDB and many others.

Acknowledgements

• George Neville-Neil

• Pedro Giffuni

• Robert Mustacchi

• John-Mark Gurney

• Robert Watson

6


