
Type-aware kernel virtual memory
access for utilities

Daniel Lovasko

Dear Reader,
this is my proposal to the FreeBSD Project for the Google Summer of Code 2015. Following pages
are dedicated to the concept ideas, implementation details and the general motivation behind the
project. Set of relevant personal information can be found at the end of the document.

Introduction

About libctf1

libctf is a BSD-licensed implementation of the Compact C Type Format I developed during the
last year’s Summer of Code that is used to store type information with respect to the C language
type system. Its main strengths are low memory consumption, future ubiquity in the base system
and available robustness on demand.

About libkvm2

libkvm provides the access to kernel virtual memory of live kernels and crash dumps. It sup-
ports reading and writing kernel memory, along with reading symbol addresses and gather process
information.

Main Idea

Many userland utilities, such as ps(1) or netstat(1) use libkvm to obtain specific data in order to
fulfil user’s inquiry regarding the kernel state. In an unfortunate case of a kernel and the userland
utility not being compiled with the same structures in terms of type sizes, endians or memory
alignment, these tools do not work properly. By proposing a specific joint interface of libctf and
libkvm that would relay on the machine-independent information provided by the CTF format and
already existing access to the memory image, we aim to overcome the current architecture-related
limitation. Furthermore, to demonstrate the functionality and usability of such library API, a
predefined set of basic userland utilities will be enhanced as a proof of concept.

Potential Mentor

John-Mark Gurney (jmg@freebsd.org)

1https://github.com/lovasko/libctf
2https://www.freebsd.org/cgi/man.cgi?query=kvm&sektion=3

The problem

Important and ubiquitous types size_t and long vary in their bit widths on many platforms, while
the same applies to the pointer types. Another significant change in the memory layout of a struc-
ture is the memory alignment.

root@64bsd:~ # uname -p
amd64
root@64bsd:~ # clang -dM -E -x c /dev/null | grep __SIZEOF_SIZE_T__
#define __SIZEOF_SIZE_T__ 8

root@32bsd:~ # uname -p
i386
root@32bsd:~ # clang -dM -E -x c /dev/null | grep __SIZEOF_SIZE_T__
#define __SIZEOF_SIZE_T__ 4

This means that every struct containing size_t will inflate (in this example) by 4 bytes, which in
turn shifts every consecutive structure member. Any program trying to map a 64-bit structure as
a mirror image of a memory on top of a 32-bit image will be affected negatively, leading to possible
data corruption.

Example

By compiling the following simple example on both architectures we demonstrate the impact on a
size of a struct.

#include <stdlib.h>
#include <stdio.h>

struct city {
float rec_jan_high;
long population;
char name[8];

};

int
main(void)
{

struct city khartoum = {39.2f, 31921, "Khartoum"};

printf("%u\n", sizeof (struct city)); /* %ul on 64bit */
return EXIT_SUCCESS;

}

We get different results:

root@32bsd:~ # ./a.out
16

root@64bsd:~ # ./a.out
24

CTF

Running ctfdump3 on both compiled binaries, we get following type information.

root@32bsd:~ # ctfdump ./a.out
...

ID: 2
Kind: int
Root: no
Name: long
Size: 32

Offset: 0
Signed: yes

Content: number
...

ID: 5
Kind: struct
Root: yes
Name: city

float record_jan_high | 0
long population | 32
char [8] name | 64
...

root@64bsd:~ # ctfdump ./a.out
...

ID: 2
Kind: int
Root: no
Name: long
Size: 64

Offset: 0
Signed: yes

Content: number
...

3https://github.com/lovasko/ctfdump

ID: 5
Kind: struct
Root: yes
Name: city

float record_jan_high | 0
long population | 64
char [8] name | 128
...

Note the difference of the population offset caused by the memory alignment and the name offset
caused by the long being 8 bytes wide.

Practical Impact

By extrapolating the issue onto structures used to describe I/O operations, mutexes or processes
in the kernel, we can concur the presence of the matter in all utilities that work with crash dumps
coming from different architectures.

The solution

Introduction

Based on the struct city example that contained the ctfdump output we can conclude that CTF
is a valid tool that provides sufficient information independently on the underlying architecture,
vanquishing issues with bit width and memory alignment. Knowing the difference in offsets, utilities
would be able to handle the data properly. To summarize the task: we want to be able to copy
data from the kernel image/core file to a userland struct without being affected by architecture-
dependent essentials. Following sections discuss the API and possible styles of usage of this format
in utilities.

Mapping Procedure

By creating a mock structure in userland that vaguely maps to the kernel structure we establish a
target for the copy procedure. This structure needs to contain only those members of the source
struct which are needed for the utility to work with. Another way of picturing this is that the
mock structure is a query description handed to the algorithm as a fill request. An example of such
structure for a source structure struct sema4 might be:

struct my_sema {
intmax_t sema_waiters;
intmax_t sema_value;

};

As compared to the original structure:
4/usr/src/sys/sys/sema.h

struct sema {
struct mtx sema_mtx;
struct cv sema_cv;
int sema_waiters;
int sema_value;

};

The contract, or ABI, is a triplet <struct name, member name, type>. The copy procedure is
using run-time reflection-like method - obtaining CTF data of the mock structure from the caller’s
binary file. In order to have the full information needed for the mapping of members between the
source and the target structures, the library needs CTF data of the target struct too. Afterwards,
it tries to map the member names of both structures, while making sure that the type does not
change, otherwise the member is not mappable. The only allowed change is in the byte width of an
integral type.

Maximal Types

To future-proof the mock structures, it is strongly advised to use maximal stdint.h integer types,
intmax_t and uintmax_t. This way adding support for a next generation of architectures (128-bit
or 256-bit) is only a matter of updating the stdint.h file (which will be done system-wide anyway)
and recompiling the tool in order to use it, since intmax_t will already point to the maximal integral
type by definition.

Mapping Metadata

As the mapping might not yield success for every member we need to handle errors properly. Clamp-
ing values or providing defaults is unwanted, as there are no guaranteed defaults for types such as
float, int or even pointers, because NaN, 0 and NULL are perfectly valid values too. This implies a
need for a parallel data structure that would carry the necessary metadata about the mapping result.

The mapping can result only in two possible states: success or failure. Therefore, only one bit per
member is needed and we can pack this information densely (internal representation) and provide
a clean interface on top of it.

Proposed API

It is important to note that this particular API is subject to future discussion, perfect for the Com-
munity Bonding Phase of the Summer of Code. Since this is only a proposal, a real need for a
specific API function or a need for a radical change to a proposed one might emerge later during
the development process.

Since all the API calls form a new set of functionality, it is appropriate to store all of them in a
library. We chose the name Type-aware KVM Library, libtak for short.

tak_t*
tak_open(kvm_t* kd)

Open a Type-aware KVM connection.

void
tak_close(tak_t* td)
Close a Type-aware KVM connection.

int
tak_read_sym(tak_t *td,

char* symbol,
char* source_type,
char* target_type,
void** target_value,
tak_md_t* md)

Read a specified symbol that has type source_type and map it to the target_type structure,
while saving the actual data to target_value and mapping metadata to md.

int
tak_read_addr(tak_t *td,

unsigned long addr,
char* source_type,
char* target_type,
void** target_value,
tak_md_t* md)

Read a specified addr that has type source_type and map it to the target_type structure, while
saving the actual data to target_value and mapping metadata to md.

int
tak_md_valid(tak_md_t* td, char* member_name)
Check if the member_name was mapped correctly.

int
tak_md_valid_all(tak_md_t* td)
Check if all data was mapped correctly.

More Complex Example

To explain the idea on a specific data structure, we will aim to obtain the number of threads of a
specific process identified by a PID as an input.

First, we need to know which symbol is pointing at the process list managed by the kernel - the
allproc symbol that is defined as a global variable of type struct proclist.
By examining the source file containing the type declaration5 we can create a mimicry struct:

struct my_proclist {

5/usr/src/sys/sys/proc.h

struct my_proc* lh_first;
};

It is important to note that the structure is defined by the sys/queue.h macro LIST_HEAD which is
quite common situation and the libtak might improve on this common pattern.

Following the declaration of struct my_proclist, we create a mimicry structure for the struct
proc. Since we care only about the field p_pid in order to identify the process, the expanded form
of the LIST_ENTRY macro in order to be able to loop over all processes, and the actual data stored
in p_numthreads, the structure will appear as follows:

struct my_proc {
struct {

struct my_proc* le_next;
struct my_proc** le_prev;

}

intmax_t p_pid;
intmax_t p_numthreads;

}

Having all necessary structures declared, we can employ the tak_read_sym function to retrieve
the structure struct my_proclist and proceed with many calls to tak_read_addr followed by
metadata checking via tak_md_valid in a matching struct my_proc.

Benefits

for The FreeBSD Project and Users

Results of this project would improve the system introspection and monitoring across various plat-
forms with a unified set of tools depending on a minimal set of information. Sysadmins and power-
users solving issues can spend less time on their toolset and brush up their troubleshooting workflow.

for Others

The license and implementation of the library and its API does not prevent other open and closed
source operating systems (such as NetBSD, illumos or Darwin) to borrow the functionality freely.

Deliverables

Cross-architecture libctf

One of the key software components is the CTF implementation, libctf. It currently supports
only x86 and x86_64 systems. In order to facilitate cross-architecture examination support, we
propose to finalize the library so that it supports all major architectures (ARM, MIPS, SPARC64)
supported by FreeBSD. Such changes will take endian and word size related issues in mind.

Cross-architecture libtak

As a part of the project, an implementation of the structure mapping algorithm will be created
along with defining every API function mentioned earlier.

Proof-of-concept Implementation of Utilities

In order to test the idea, a separate, much simpler version of certain utilities will be created. These
utilities are chosen based on the area of their usage, uniformly distributed between network, I/O or
process information. Subsequently, the new code can be either ported back to the original utilities
or replace them all together. Proposed utilities are:

• ps(1)

• ipcs(1)

• w(1)

• vmstat(1)

Project Schedule

Initial Phase

• ARM, MIPS and SPARC64 support for libctf along with unit testing

• libtak API design

Between 1
4 and the Midterm

• libtak API implementation

• ipcs(1) proof-of-concept

• ps(1) proof-of-concept

Pre-final Phase

• w(1) proof-of-concept

• vmstat(1) proof-of-concept

Final Phase

Depending on the progress achieved in the previous phases there are more options available: either
finish the selected proof-of-concept utilities (by merging the new code or borrowing the command
line option parsing from the existing ones) or create a proof-of-concept version of another utility,
e.g. iostat(1) or top(1).

Personal Information

Contact
Name Daniel Lovasko
E-Mail lovasko@freebsd.org
Phone +421 904 329 363
IRC lovasko on EFnet and Freenode

Motivation

I find the project topic to be very useful with regards to system administration and troubleshooting
across multiple platforms. Working and engaging with the FreeBSD community is a joyous experi-
ence and would like to continue the collaboration, mainly concerning the CTF format and its usage.
CTF and its utilisation in the FreeBSD system is also the topic of my final university thesis and
therefore this project has an academic importance for me personally too.

Availability

• 2-4 hours/day during 25 May - 31 June (exam period)

• 6-8 hours/day during 1 July - 24 August

Open Source Involvement & Work Experience

Google Summer of Code 2014 5/2014 - 8/2014

The goal of my summer project was to add the capability of pretty-printing data structures to the
kernel debugger DDB. First step was to create a BSD-licensed library that implements the Compact
C Type Format used in DTrace and mdb to represent data types. This involved reverse-engineering
the format, writing unit tests, thorough documentation of both the format itself and the library
code, and following strict code-style guidelines set by the project’s community. Final piece was the
utilisation of the library in the kernel debugger to achieve the set goal.

German Artificial Intelligence Research Center 12/2013 - 5/2014

From December 2013 to May 2014 while staying as an exchange student at the Saarland University,
I was granted an Assistant Researcher internship position in the Talking Robots project. My main
responsibilities consist of improving existing applications in Java, both interface and underlying
algorithms and management of internal git repositories. I consider a big achievement that I talked
my coworkers into open-sourcing the project, which is now actively in-progress.

SUSE Linux 1/2012 - 7/2013

Between January 2012 and July 2013 I was employed as a Software Developer. My work revolved
around packages along with maintenance and development of internal tools in Python and Perl that
supported the packaging work-flow. I occasionally committed to open-source projects, e.g. quilt.
Also, my bug-fixing patches for the set of packages I was responsible for were accepted upstream.

Talks

AsiaBSDCon 3/2015

The main track presentation, and a corresponding conference paper, discuss importance of the
Compact C Type Format for debugging purposes and describe innovative ways for its further em-
ployment, as well as introduces the library implementation to potentially interested developers.

FOSDEM 1/2015

After successfully finishing the Google Summer of Code, I delivered a lightning talk to present the
improvements to the kernel debugger made along with the free-licensed CTF implementation to a
wider audience outside of the FreeBSD community. This included developers from various Linux
and illumos distributions.

SUSE Labs Conference 2/2013

Presentation of the Packaging Toolkit, an internal set of helper utilities that I co-created while
working at SUSE, aiming to improve the packaging workflow. The talk had a positive impact and
generated new contributions to the project.

Education

University

Charles University in Prague
Faculty of Mathematics and Physics
Fifth year bachelor student in Informatics
Subject field Programming

Erasmus Exchange University

Saarland University
Faculty of Natural Sciences and Technology I (Mathematics and Computer Science)

Relevant Completed University Courses

• Programming I, II

• Introduction to UNIX

• Selected topics on UNIX

• Programming in UNIX

• Algorithms and Data Structures I, II

• Principles of Computer Architectures

• Operating Systems

