
Pretty-printing
kernel data structures

lovasko@freebsd.org

AsiaBSDCon 2015	

Tokyo, Japan

mailto:lovasko@freebsd.org

Why?

• data as the correctness identifier	

• tools need to be good with variables	

• printf vs. debugger

DDB

• kernel debugger	

• FreeBSD, OpenBSD, NetBSD, OS X	

• single stepping kernel, breakpoints	

• included in GENERIC kernel	

• old & lacking some important stuff

The Problem

Enable the kernel debugger DDB
to pretty-print data structures
that are used in the currently

loaded kernel.

Example

struct city {
 unsigned int population;
 char* name;
 float record_high_jan;
}

Example

>prettyprint 0x1234 ‘struct city’
!

0x1234 = struct city {
 unsigned int population = 30
 char* name = “Khartoum”
 float record_high_jan = 39.7
}

Status Quo

• examine command	

• can specify content type (string, float, …)	

• very important at the low level

Example

>examine/x 0x1124
kdb_sysctl_enter+0x89: 0xcafebabe

Better status quo

• show command	

• supports few structures: buffer, domain,
file, lock

Still not good enough

• still linear approach (code vs. struct)	

• what happens when we add a type?	

• what happens when we add a member?	

• more generic approach!

Need for type information

• format that describes data types	

• DWARF (too big though)	

• other options?	

• we already have CTF

Compact C Type Format

• DTrace/mdb origin	

• storing types - integers, floats, structs, …	

• can represent everything	

• very compact

(CTF)

So, how compact?
M

eg
ab

yt
es

0

10

20

30

40

BSD kernel zfs.ko radeonkms.so

CTF DWARF

The Solution

CTF, duh

Old library

• made at Sun/Joyent	

• CDDL license	

• unstable private API	

• does not contain full implementation

New library

• made by me!	

• 2-clause BSD	

• FreeBSD support	

• github.com/lovasko/libctf

http://github.com/lovasko/libctf

Implementation

• C99 (almost)	

• using queue(3)	

• using stdint(7)

• unit tests

Average inflation
$ find /boot/kernel -name '*.symbols' -
exec ctfmemusage -r {} \; | awk '{s+=$1}
END{print s/NR}'

2.67788

Average loading time
M

ili
se

co
nd

s

0

12,5

25

37,5

50

BSD kernel zfs.ko radeonkms.so

DDB work

• DDB lives in kernel space	

• libctf needs to adapt (FreeBSD only)	

• I/O in the debugger is too limited	

• caching the data set before

libctf in every space
• the same codebase shared between

kernel and userland	

• heavy use of macros

#ifdef _KERNEL
 #define _CTF_FREE(ptr) free(ptr, M_CTF)
#else
 #define _CTF_FREE(ptr) free(ptr)
#endif

Casual types

• adapt proper encoding (float as a floating
point number, char as a letter, …)	

• struct members in offset order with
indentation	

• optionally follow pointers

Recursive data types

• linked lists, binary trees, n-ary trees,
queues, …	

• ubiquitous	

• indentation model does not work

Bad example
0x123 = struct two_int_list {
 int a = 11
 int b = 12
 struct two_int_list* next = {
 int a = 21
 int b = 22
 struct two_int_list* next = {
 int a = 31
 int b = 32
 struct two_int_list* next = {
 int a = 41
 int b = 42
 struct two_int_list* next = NULL
} } } }

Good example
0x123 = struct two_int_list = {
 int a = 11
 int b = 12
}
 | next
 v
{
 int a = 21
 int b = 22
}
 | next
 v
NULL

mdb approach

• addr::list type field

Detecting data structures

• observe various common patterns	

• names, position in the structure, types	

• queue(3) and tree(3)

• create a view for each one (or die trying)

Possible views

• on demand	

• interactive tree discovery	

• hashtable querying

(not done)

Frequently asked questions

What about my BSD?

• currently only FreeBSD	

• libelf and zlib dependency for libctf	

• happy to help

What about my arch?

• currently only x86 	

• will provide ARM and MIPS port	

• happy to help

Why is it not in the tree?

• needs review	

• needs testing

Where can I get it?

• will be available at my FreeBSD wiki	

• VirtualBox image

What more is there to do?

• finish endianness in libctf	

• sizeof command 	

• finish port to Linux and illumos

Future projects

• CTF userland tools	

• libkvm + libctf	

• LLVM/Clang integration	

• C++

CTF userland tools
• ctfdump	

• ctfstats	

• ctfcorequery	

• ctfmerge	

• ctfconvert	

• ctfdiff	

• ctfmemusage

libkvm + libctf

• utilise this for tools such as ps(1) or
netstat(1)	

• kernel and userland must not match	

• not even architectures

LLVM/Clang integration

• generate CTF data during compilation	

• merge CTF data during linking	

• new library has good license

C++

• add C++ type support	

• needs full circle - DTrace integration

Thanks

• George Neville-Neil	

• rest of the FreeBSD Community	

• Google	

• Foundation and Conference Orgs

kthxbai
lovasko@freebsd.org

mailto:lovasko@freebsd.org

